Analytical and numerical treatment of Jungck-type iterative schemes

نویسندگان

  • Abdul Rahim Khan
  • Vivek Kumar
  • Nawab Hussain
چکیده

In this paper, we introduce a new and general Jungck-type iterative scheme for a pair of nonself mappings and study its strong convergence, stability and data dependence. It is exhibited that our iterative scheme has much better convergence rate than those of Jungck–Mann, Jungck–Ishikawa, Jungck–Noor and Jungck–CR iterative schemes. Numerical examples in support of validity and applications of our results are provided. Our results are extension, improvement and generalization of many known results in the literature of fixed point theory. 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence and almost sure (S,T)-stability for random iterative schemes

In this paper, we study the convergence and almost sure (S, T)−stability of Jungck-Noor type, Jungck-SP type, Jungck-Ishikawa type and Jungck-Mann type random iterative algorithms for some kind of a general contractive type random operators (2.14) in a separable Banach spaces. The Bochner integrability of random fixed point of this kind of random operators, the convergence and almost sure (S, T...

متن کامل

Strong Convergence and Stability results for Jungck-SP iterative scheme

In this paper, we study strong convergence as well as stability results for a pair of nonself mappings using Jungck-SP iterative scheme and a certain contractive condition. Moreover, with the help of computer programs in C++, we show that Jungck-SP iterative scheme converges faster than Jungck-Noor, Jungck-Ishikawa and Jungck-Mann iterative schemes through example. General Terms Computational M...

متن کامل

On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces

In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.

متن کامل

The Convergence of Jungck-type Iterative Schemes for Generalized Contractive-like Operators

We introduce the Jungck-multistep iteration and show that it converges strongly to the unique common fixed point of a pair of weakly compatible generalized contractive-like operators defined on a Banach space. As corollaries, the results show that the Jungck-Mann, Jungck-Ishikawa and Jungck-Noor iterations can also be used to approximate the common fixed points of such maps. The results are imp...

متن کامل

On a cyclic Jungck modified TS-iterative procedure with application examples

This article investigates some properties of quasi-cyclic and cyclic Jungck modified TS-iterative schemes in complete metric spaces and Banach spaces. In particular, properties of convergence of distances and sequences associated with the self-mappings which define the Jungck modified TS-iterative procedures are studied as well as some properties concerning the convergence of the solution to co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2014